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Hyperdynamics for entropic systems: Time-space compression
and pair correlation function approximation
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We develop a generalized hyperdynamics method that is able to simulate slow dynamics in atomistic general
(both energy- and entropy-dominated) systems. We show that a few functionals of the pair correlation function,
involving two-body entropy, form a low-dimensional collective space, which is a good approximation that is
able to distinguish stable and transitional conformations. A bias potential, which raises the energy in stable
regions, is constructed on the fly. We examine the slow nucleation processes of a Lennard-Jones gas and show
that our method can generate correct long-time dynamics without prior knowledge.
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Molecular dynamics (MD) simulations are typically lim-
ited to a time scale of less than a microsecond, so many
interesting slow processes in chemistry, physics, biology, and
materials science cannot be simulated directly. Recently, new
methods, including kinetic Monte Carlo simulations, transi-
tion path ensemble methods, minimal action and/or time
methods, and the constrained MD simulation [1-4], have
been developed to study slow processes (for a review, see
[5]). They all require a prior knowledge of the system, which
is often hard to obtain, and they can only deal with a few
special processes inside a small part of the configurational
space of the system.

For many systems, the interesting dynamics are governed
by the infrequent, fast transitions between metastable re-
gions; yet the systems spend most of their time in the stable
regions, whose dynamics can be well described by some
time-averaged properties. Hence an alternative approach to
describing the long-time dynamic trajectory would be to only
use suitable time propagators. In other words, we would
coarse-grain the stable configurations while keeping the
needed details in the unstable regions that define the transi-
tions. Hyperdynamics, as developed by Voter [6], is an ex-
ample of such a coarse-graining method. The hyperdynamics
method treats the potential wells as stable conformational
regions that are separated by saddle regions. A bias potential
is designed to lift the energy of the system in these wells,
while keeping the saddle regions intact. Dynamics on the
biased potential leads to accelerated evolution from one
stable region to another. Based on transition state theory, the
realistic escape time t,,, from the wells can be reproduced,
ear=ArZ; exp[ BAV(r(t;))], where At is the time step of MD
and AV(r) is the applied bias potential along the simulated
trajectory r(f). This method has been applied successfully to
systems in which the relevant states correspond to deep wells
in the potential energy, with dividing surfaces at the energy
ridge tops separating these states [7]. It has, however, not
been clear how to apply hyperdynamics in cases where the
transitions are dominated by entropic considerations. In such
cases, the potential energy alone is not enough to distinguish
stable and transition regions since some conformations with
similar energy might belong to stable and transition regions,
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respectively. A complication that occurs even when trying to
apply hyperdynamics to solids with fairly clearly defined
stable regions is that after applying the bias potential, the
energy landscape becomes much flatter and the system can
start to have entropiclike characteristics. These effects limit
the improvement in the simulation rate that can be achieved
by the hyperdynamics method over the direct MD approach.
Thus, although there are some attempts in the literature [8,9]
to apply hyperdynamics to enhance conformational sampling
in biosystems, generally, accurate slow dynamics or kinetic
rates can only be expected for relatively simple solids or
low-dimensional systems.

In this Rapid Communication, we derive a more general
hyperdynamics method that can be used to access longer
time scales in fluids. We present explicit conditions for ap-
plying this method. We use the pair correlation function as a
reliable means of identifying the important conformations
and then construct the appropriate bias potentials in a lower-
dimensional space while the simulation runs. We then exam-
ine the performance of this method by looking at the slow
gas-liquid transition in a system of N identical Lennard-
Jones particles.

We begin this process by introducing a time-compressing
transformation dr=a(r)dt, where d7 is a pseudo-time-step,
dt is the real time step, and the local dimensionless
compression factor is given by a conformational function
a(r), which is <I1. Thus the trajectory r(¢) can be rewritten
as r(7)=r(7(t)) in a shorter pseudo-time-interval 7
=t[dr D(r;r(t);t)a(r), where D(r;r(t);1) is the distribution
of r(¢) in the interval [0,¢]. The compressed trajectory r(7)
satisfies a new equation of motion:

d v P; d

dTP,_ R, +%‘, MPJ y Ina(r), 1)
where P,=M dR;/dt, M is the transformed mass, equal to
ma*(r), and m is the real mass of the particles. V(r) is the
potential energy, and r is the simple notation of the position
vectors R; (i=1,...,N) of all the N particles. At first glance
it would not appear to be advantageous to directly generate
r(7) from Eq. (1) as very short time steps are necessary due
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to the small values of M. However, if we only focus on the
long-time dynamics, we can use a smoother pseudotrajectory
R(7) to replace r(7), provided that one requires the repro-
duced time from R(7) to be the same as that from (7). Thus,
a sufficient condition to replace r(7) with R(7) is that their
distributions are the same.

In general, the distribution along a finite-length trajectory
is not easily known. However, in the time-consuming regions
(stable regions), similar conformations would be visited
many times even during a finite simulation time. Thus we
can assume the distribution can be approximated by
D(r;r(t) ;1) cexp[-BV(r)]. Many methods might be used to
generate R(7) with the required distribution. One simple
method is to use a realistic trajectory corresponding to the
local equilibrium of a new potential U(r)=V(r)—kgzT In a(r).
Actually, based on the same local equilibrium supposition, if
one replaces the kinetic energy term of Eq. (1) by its
ensemble-averaged value (P,P;/M)=kyT35;;, Eq. (1) is indeed
the equation of motion of the particles with smaller mass M
under the new potential U(r). Outside the time-consuming
regions, we choose a(r) as unity so that the MD time is
realistic. If we select small a(r) only in the potential well
regions, we effectively have the hyperdynamics presented by
Voter [6]. The condition for the use of compressed time is
that the simulated trajectory under U(r) has the equilibrium
distribution in all the biased (time-compressed) regions. Sim-
ply, we can suppose that the distribution is locally given by
the Boltzmann one in the conformational regions where the
value of the distribution is larger than a critical value. In
comparison with the transition state theory in the original
hyperdynamics implementation, the approach makes it easier
both to determine the proper regions to bias and to design the
appropriate bias potential.

In solids, as the number of conformations inside stable
regions (potential energy wells) is often small and the distri-
bution of long-time trajectories can reach local equilibrium,
the hyperdynamics method works very well. However, in
entropy-dominated systems (e.g., gases and liquids), the
number of conformations (entropy) inside time-consuming
regions may be huge, and thus the Boltzmann distribution
may not be reached in finite MD time. In this case, we
average the neighboring distribution of the trajectory,

D(r;0)=[,D(r)dr, where o is the size of selected neighbor-
hood. For the smoothed distribution, in time-consuming re-
gions, we can expect D(r; o) [, exp[—BV(r)ldr. Thus, by
selecting smooth a(r) functions, the realistic time propagator
can still be reproduced from the physical trajectory under
U(r), provided the averaged distribution of this trajectory
satisfies the equation.

As an illustration, we compress the 3N-dimensional flat
conformational space r to a curved 3N-dimension g space,
dq=A(r)dr, where A(r)=dq/dr is the Jacobian of the trans-
formation. In ¢ space, the trajectory ¢(r)=q(r(¢)) satisfies a
new equation of motion with a positive symmetric mass ma-
trix M=B”(r)mB(r), where B” denotes the transpose, m is
the real mass diagonal matrix, and B=A"". Not losing any
generality, we choose a diagonal M by rotating the dg space,
and the new equation of motion is
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where P and P; are the generalized momentum and its j
component, respectively, and M is the j diagonal element of
M. If one replaces Pf/ M; with kgT, Eq. (2) is the equation of
motion of heavier particles (mass M j) under a new potential
W(q)=V(q)+kgT In J(q), where J(g)=det(A) is the determi-
nant of the Jacobian A of the transformation. Here, W(g) is
indeed the free energy of the system in g space. Thus, by
inhomogeneously compressing the conformational space, we
transform the original entropy-dominated r space to an
energy-dominated ¢ space with effective potential W(g). If
the trajectory ¢(r) of W(gq) corresponds to the Boltzmann
distribution in some time-consuming regions, the corre-
sponding trajectory r(g(z)) represents a local equilibrium in r
space. Thus we can bias the effective potential W(g) in ¢
space to extend the MD time scale. Actually, this can be done
directly in r space without using the explicit transformation
A(r).

The keys to successfully applying hyperdynamics are dis-
tinguishing the conformations and designing suitable bias
potentials AV(r) for the entire conformation space r. Obvi-
ously, AV(r) should have the same symmetry as V(r). Con-
sidering a simple case of N identical particles, we rewrite the
conformational vector {R;} (j=1,...,N) as a density field
p(x)=2;8(x~R;). Here both x and R are the normal three-
dimensional spatial vectors. Since the neighboring conforma-
tions are identical from the viewpoint of slow dynamics, p(x)
can be averaged to get a smooth function p(x) by, for ex-
ample, using a Gaussian function to replace the Dirac & func-
tion. If the width of the Gaussian function is small, p(x) can
be used to identify different conformations. Here we used a
functional space to replace the 3N-dimension conformation
space, but actually the physically allowed p(x) only occupies
a very small part of the functional space. By neglecting
multibody correlations and directional correlations, we can
approximate the density field p(x) (or conformations) by us-
ing some bin-averaged values of the radial pair correlation
function g(x) of the conformations (x is the length of the
spatial vector x), g;=(1/A) [ g(x+x;)dx. Here g; is the aver-
age value of g(x) in a small bin (x;—A/2,x;+A/2). Thus,
each conformation corresponds to the group of g; that defines
a point in g space. The spatial neighbors of the conformation
and their symmetric companions will also correspond to the
same g point. If the bin size is very small, all conformations
with the same {g;} are identical from the slow dynamics
viewpoint and thus the bias potential of hyperdynamics can
be written as a function in the low-dimensional g space
AV(RY)=f({g,(RM)}). To better identify conformations even
when larger bin sizes are used, some important dynamics-
related physical variables, such as the potential energy
V(RY), can be added into the {g,} variable group.

Another important variable is the two-body entropy S,
=—27p[[g(x)In g(x)—g(x)+1]x’dx. which forms the main
part (about 90%) of the macroscopic excess entropy [11].
Similarly, it is also possible to use some other functional of
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g(x) to replace some g;. In special systems, it may be useful
to add some special order parameters O; to take into account
possible multibody correlations and thereby decrease the
needed number of g,. Finally, we have a group (of order 10)
of general collective variables denoted as S={S’}, which
might involve V, §,, some {g;}, and some possible {0}, to
identify conformations and form an appropriate bias poten-
tial. In general, we construct the bias potential as
AV(S(RY)=kyzTf,(In D(S)/D,), where D(S) is the distribu-
tion of the simulated trajectory and D, is the selected critical
value. The function f,(z)=z for larger positive z, and
smoothly approaches 0 as z decreases to 0. The designed bias
potential will generate a flatter distribution in S space while
the biased regions are still visited often enough for the sys-
tem to reach local equilibrium. The bias potential can be
formed gradually. First, we generate a long nonbiased MD
trajectory to calculate D(S) and form a (small) bias in some
S regions. Next a long trajectory is simulated in the biased
system, which in turn generates the basis for the next bias.
This process is repeated until the desired long realistic time
is reached. Thus, we can gradually study dynamics at ever
longer time scales, but at the expense of the details seen in
fast dynamics. With the biased potential, the bias force on
particles can be calculated by the chain rule of differentiation
Af,=-3(0AV/35)) (851 IR,).

We have examined the general hyperdynamics method in
a simple system of N identical Lennard-Jones (LJ) particles
and studied the slow gas-liquid transition in the NVT en-
semble. We used the truncated and shifted LJ potential with
r.=2.5, and the reduced units €;=1, o;;=1, and the mass of
particles m=1. The temperature is fixed as 7=0.613. The
velocity Verlet algorithm was used to integrate the Langevin
equation of motion. Obviously, in such a system, the poten-
tial energy of transitional conformations (liquid drops with
critical size) is lower than that of the stable gas phase. Thus,
some simple bias methods, for example, just lifting the en-
ergy of all lower-energy conformations [10], cannot work at
all in such a system. Actually, for general entropy-important
systems, using the potential alone is not enough to identify
the transitional conformations and then form the bias poten-
tial. Only in some special low-dimensional systems [9]
where the entropy is occasionally not important may excep-
tions be found.

We initially studied a gas phase with a relatively large
saturation (a number density n=0.02 for a system of N
=1000 particles) for which a liquid drop forms in normal
MD without any bias. The phase transition happens in a nar-
row time window where the potential V, the two-body en-
tropy S, and the pair correlation function g(x) are found to
change drastically in the gas-liquid phase transition process.
However, inside each small S, range, we found that g(x) only
fluctuates slightly around its average value. This shows that
the two-body entropy §, integrates the information of the
g(x). Thus, in this simple system, we use only two function-
als of g(x), namely, V and S,, to form the collective space
while designing the bias potential. By examining the g;,
which are available from our simulations, we were able to
show that V and S, can sufficiently identify transition states
and stable states, at least in this simple system. Since S,
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FIG. 1. (Color online) The distribution of transition time of the
gas phase in direct MD (a=1) and biased MD (a=20) simulations.
The inverse slope of the least-squares fit to the points (solid line)
gives the lifetime of the gas phase. n=0.014, N=400, and T
=0.613. Inset: the time boost in a typical biased MD simulation is
shown.

gives the main part of the entropy, we expect that S, and V
are also leading collective variables even in more complex
systems.

When we decrease the density (or saturation) of the LJ
system, the lifetime (7=1/k, where k is the transition rate) of
the gas phase increases drastically. For example, 7~ 10*
when the density n=0.016, but increases by about a factor of
20 when the density is only slightly decreased to n=0.014.
Even in this density region, direct simulation of the gas-
liquid transition is still possible. Thus, we compared the tran-
sition kinetics with and without the use of a bias. Figure 1
shows that the distribution of the gas-to-liquid transition
waiting time ¢ is exponential in 7 from both nonbiased and
biased simulations, In P(f) «c—¢t/ . The boost factor « result-
ing from the hyperdynamics method, which characterizes the
average gain in the rate at which time advances relative to
direct MD, is about 21, as shown in the inset of Fig. 1 («
=1 for unbiased MD simulation). We also directly calculate 7
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FIG. 2. (Color online) Top: The distributions of two-body en-
tropy S, from nonbiased and biased simulations. The rebuilt distri-
bution of the bias simulation is also shown. Here, n=0.008, N
=1000, and 7=0.613. Bottom: The free energy profiles from the
nonbiased and biased simulations are compared. The inset shows
the simulated samples in the (S,,V) space. The observed liquid
phase does not show here.
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by averaging the transition time of full simulations for a
better comparison. We found that in the biased MD case, 7
=2.02X 10°, in excellent agreement with the direct MD re-
sult, 7=2.07 X 10°. In our current simulations, we gradually
increase the bias potential until our desired transition can
happen in the usual MD steps. Thus we need and can apply
larger bias potentials in the lower-density LJ systems. At n
=0.012, the phase transition is detected while « is of order of
100. At still lower density, for example, n=0.01, it is very
difficult (if not impossible) to observe the transition using
direct MD simulations. However, with our method we can
still easily detect the gas-liquid transition. Figure 2 shows the
results for n=0.008 and N=1000. The distribution P(S,) is
flatter and broader in the biased simulation, indicating that
the system visits a larger conformational space. The lower
panel of Fig. 2 shows the reproduced free energy profile
from the distribution of the biased simulation (a= 10°). It
agrees well with that from a nonbiased simulation in the
region where the direct MD is possible. The inset of Fig. 2
shows the distribution of samples in the (V,S,) space. The
shown dense region (S,>-300) which corresponds to the
gas phase is biased due to its higher distributed density of
samples. The lower-density region shown in the inset
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(S, <-300), corresponding to the transition region (the lig-
uid phase in which S, is far smaller than =300 is not shown),
was not biased. From the obtained distribution, we know S,
is actually a good reaction coordinate; the difference between
the rebuilt and biased log;(P(S,), shown in the top panel of
Fig. 2, corresponds to the profile of the applied bias potential
(with a factor kzT In 10).

To summarize, we have expanded the hyperdynamics
method to more general cases by inhomogeneously com-
pressing time and conformational space. Our approach di-
rectly generates an explicit general method to design the bias
potential. In simple systems, a few functionals of the pair
correlation function provide a good approximation of the
density field for identifying the important conformations and
for constructing the bias potential without prior knowledge
of the conformational space. The method is expected to be
applicable in more complex fluids where even more collec-
tive variables might be needed.

This work was supported by the U.S. DOE under Contract
No. W-7405-ENG-36. We are grateful to A. F. Voter and H.
Chen for stimulating discussions, comments, and sugges-
tions.

[1] A. B. Bortz, M. H. Kalos, and J. L. Lebowitz, J. Comput. Phys.
17, 10 (1975).

[2] P. G. Bolhuis, D. Chandler, C. Dellago, and P. L. Geissler,
Annu. Rev. Phys. Chem. 53, 291 (2002).

[3] R. Olender and R. Elber, J. Chem. Phys. 105, 9299 (1996); B.
K. Dey, M. R. Janicki, and P. W. Ayers, ibid. 121, 6667
(2004).

[4] A. Laio and M. Parrinello, Proc. Natl. Acad. Sci. U.S.A. 99,
12562 (2002).

[5] R. Elber, Curr. Opin. Struct. Biol. 15, 151 (2005).

[6] A. F. Voter, Phys. Rev. Lett. 78, 3908 (1997); J. Chem. Phys.
106, 4665 (1997).

[7]1 R. A. Miron and K. A. Fichthorn, Phys. Rev. Lett. 93, 028301
(2004).
[8]J. A. Rahman and J. C. Tully, J. Chem. Phys. 116, 8750
(2002).
[9] D. Hamelberg, T.-Y. Shen, and J. A. McCammon, J. Chem.
Phys. 122, 241103 (2005).
[10] M. M. Steiner, P.-A. Genilloud, and J. W. Wilkins, Phys. Rev.
B 57, 10236 (1998).
[11] H. S. Green, The Molecular Theory of Fluids (North-Holland,
Amsterdam, 1952); A. Baranyai and D. J. Evans, Phys. Rev. A
40, 3817 (1989); P. V. Giaquinta, G. Giunta, and S. Prestipi-
noGiarritta, ibid. 45, R6966 (1992).

035701-4



